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Cellular solids constitute a unique class of materials possessing a high stiffness to weight 
ratio. Due to the high level of porosity in these materials (70 to 99.7%) one must utilize 
special testing considerations in order to obtain accurate results. One of these items has been 
referred to as edge effects and stems from the large scale macrostructure of cellular materials. 
This results in a dramatic decrease in the mechanical properties when testing small specimens 
having a large cell size. A reticulated vitreous carbon was used to characterize these effects for 
both elastic modulus and flexural strength measurements. It was observed that a critical speci- 
men to cell size ratio is required to overcome these effects and achieve accurate results. A 
simple model is presented to help in predicting these edge effects. 

1. I n t r o d u c t i o n  
There are a variety of porous, cellular materials 
which are most commonly, polymer foams. These are 
exploited for their specific stiffness in structural sand- 
wich panel applications, where they are laminated 
between two dense materials as a means of  maximiz- 
ing the moment of inertia with a minimum of material. 
Another very important application of polymer foams 
is in packaging materials [1, 2]. Cellular ceramics have 
primarily been utilized for filtering molten metals. 
There may be, however, a wide range of structural 
applications for these ceramics which have not yet 
been realized. Cellular metals have been laminated 
with dense layers on the outer surface and assembled 
into structures such as mirrors and energy collection 
systems on satellites [3]. Their higher stiffness means 
that cellular ceramics have also drawn attention for 
these types of aerospace applications. Another possi- 
bility would be to use open cell ceramics as a skeleton 
to make mutually interconnected composites with 
other materials such as polymers or metals, i.e., both 
phases are three dimensionally connected. Irrespective 
of the specific application, the fundamental mechan- 
ical behaviour of  the cellular structure must be under- 
stood. 

Porous materials are found in a variety of micro- 
structural types, one of  these has been termed cellular. 
These cellular materials have a relative density less 
than 0.3 and are often represented by a repeating unit 
cell [2]. The cellular geometry may be two dimensional, 
e.g. honeycombs, or three dimensional, e.g. foams 
(Figs l and 2). Foams, have relatively isotropic cells 
and the mechanical properties mimic this behaviour. 
These materials are further classified into open and 
closed cell geometries. In open cell materials, the cells 
are interconnected such that there is a continuous pore 
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phase throughout and the solid is an interconnected 
array of struts. Closed cell materials, on the other 
hand, have a thin membrane of solid in the cell faces 
sealing them from neighbouring cells. 

The discrete nature of the microstructure in these 
materials, their irregular surfaces, and their mechan- 
ical fragility poses a whole set of questions in terms of 
mechanical testing requirements. For  example, the 
strength of  these materials in compression is about 
equal to that in tension and therefore crushing of  the 
material at the load points or grips is of  specific con- 
cern, especially as the applied stress is being amplified 
in the individual struts. It has been pointed out in 
indentation tests, one needs to consider carefully the 
probability of  surface contacts [2]. Another important 
effect that results from the large scale macrostructure 
in these materials, is the requirement for a relatively 
large specimen size for testing, in order to obtain 
accurate property measurements. These are often 
referred to as edge effects. The impetus for this work 
was to evaluate the source of  these edge effects and 
determine the specimen size required for a given cell 
size in order to obtain reliable results in bend testing. 
A simple model was also developed to predict the 
magnitude of these effects. It may also be possible to 
use this model to correct experimental strength values 
for these edge effects and obtain more reliable design 
data. 

2. Experimental procedure 
The material used in this study was a reticulated 
vitreous carbon*. Amorphous carbon is an ideal 
model material for studying the behaviour of brittle 
cellular solids such as ceramics. This material is fabri- 
cated by converting an open cell polymer foam into a 
glassy carbon by heating in an inert atmosphere. An 
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Figure 1 Microstructure of a two-dimensional honeycomb ceramic 
made up of square prismatic cells. 

Figure 2 Microstructure of a three-dimensional reticulated vitreous 
carbon consisting of relatively isotropic open cells. 

important aspect of this material is that the cells 
remain completely open down to the smallest cell 
sizes. Specimens were tested at three different cell 
sizes; 2.5, 0.56 and 0.25 mm and a relative density of 
approximately 0.035. The specimens consisted of 
beams of square cross-section and an aspect ratio of 5. 
Four or five specimen sizes were tested at each cell size 
in order to bracket a range of 2 to 100 cells being 
tested along the base and height of the sample. Table 
I shows the experimental matrix of specimen dimen- 
sions and cell sizes used in this study as well as the 
number of specimens tested under each condition. 

The relative density of the specimens was deter- 
mined from their weight and dimensions. A theor- 
etical density o f  1.49gcm 3 was used for the solid 
vitreous carbon as suggested by the manufacturer. All 
of the specimens at a particular cell size were cut from 
the same billet of material to minimize specimen to 
specimen variability. 

The Young's modulus was measured by the static 
technique in three-point bending. Five specimens at 
each condition were tested by measuring the load- 
deflection response and calculating the elastic modulus 
using [4] 

E = (pL3) / (45obh 3) (1) 

T A B L E  I Experimental matrix 

Cell Specimen size Cells Flexure Samples 
size (mm) along span tested 
(mm) edge (ram) 

2.5 50 x 50 x 250 20 230 5 
2.5 38 x 38 x 190 15 165 10 
2.5 25 x 25 x 127 10 115 20 
2.5 13 x 13 x 64 5 54 20 
2.5 5 x 5 x 38 2 32 20 

0.56 38 x 38 x 229 70 210 10 
0.56 25 x 25 x 127 45 115 20 
0.56 15 x 15 x 76 25 63 20 
0.56 6.4 x 6.4 x 38 10 32 15 
0.56 5 x 5 x 38 5 32 20 

0.25 25 x 25 x 127 100 115 20 
0.25 18 x 18 x 89 70 79 20 
0.25 10 x 10 x 51 40 45 20 
0.25 5 • 5 x 38 10 32 20 

where P is the load, 50 the maximum deflection, L the 
span of the fixture and b, h the base and height of the 
specimen, respectively. The load was applied using a 
mechanical testing apparatus* and the deflection was 
measured optically using a horizontally mounted 
stereomicroscope equipped with a calibrated eyepiece. 
Deflections as small as 6/~m could be measured accu- 
rately giving a maximum error of _+ 5% in the deflec- 
tion measurements. The shear contribution to the 
deflection was calculated as being a maximum of 10% 
and therefore was not accounted for in the analysis. 
The loads which were required to deflect the smallest 
specimens were less than that detectable by the load 
cell. In this case a pan balance was used to measure the 
load. The elastic modulus of several samples was veri- 
fied using the resonance technique [5] and gave good 
agreement with the static measurements. 

The bend strength was determined using the same 
three-point bend fixtures as in the modulus measure- 
ments. This configuration was selected to minimize 
crushing of the specimen beneath the load points. Due 
to the low hardness of glassy carbon, small pieces of 
cardboard reinforced with glass slides had to be placed 
at the load points to distribute the load and prevent 
crushing. Teflon cylinders were used as the load sup- 
ports in order to minimize friction during testing. The 
equation used to calculate the bend strength of a 
rectangular beam subjected to three-point bending is 
given as 

ar = (3PL) / (Zbh 2) (2) 

where the variables have the same meaning as in 
Equation 1. 

3. Results  
Scanning electron micrographs of the material (Fig. 2) 
shows the three-dimensional cell geometry and the 
smooth, dense, glassy surface of the solid material. 
This photomicrograph is of the finest cell size 
(0.25ram) sample showing a completely open cell 
structure. In Fig. 3 the fracture surface of an indi- 
vidual strut exhibits a fracture pattern characteristic 
of an amorphous, brittle material. This fracture sur- 
face also shows that the struts in this material are fully 
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Figure 3 Fracture surface of an individual solid strut exhibiting 
brittle conchoidal fracture. 

dense throughout. This is different from the hollow 
struts which result when cellular ceramics are fabri- 
cated by coating a polymer substrate with a ceramic 
slurry. The subsequent removal of the polymer prior 
to sintering of the ceramic results in a large triangular 
hole down the centre of the struts [6]. 

The elastic modulus and bend strength results 
are summarized in Table II. The density of the 
specimens varied from 3.0 to 4.0% of the theoretical 
value. The specimen to cell size ratio indicates the 
number of c61ls which are along the base and height of 
the samples. Both the strength and modulus remain 
fairly constant at large specimen sizes where they 
reach a plateau value. At smaller specimen sizes both 
properties appear to decrease dramatically with size. 
We can argue that to a first approximation, the true 
strength and stiffness of the cellular material is not 
expected to change with specimen size. The apparent 
reduction with decreasing specimen size that is 
observed in Table II is a result of not considering edge 
effects i.e., the calculated properties, based on the 
measured sample dimensions, significantly underesti- 
mated the true properties of the material. The proper- 
ties measured for the large specimens are more rep- 
resentative of the true material properties because the 
contribution of the edge effects is within the other 

T A B  L E I I Mechanical property results 

experimental errors involved in the tests. Certainly the 
larger the specimen to cell size, the more closely the 
material approaches a continuum. Based on these 
results, one should test samples having at least 15 to 20 
cells along the base and height of a bend specimen in 
order to minimize these effects and obtain reliable 
data for the actual strength of these materials. In large 
cell materials, testing very large samples is not always 
practical and, therefore, one may prefer to correct for 
these edge effects. On this basis, the following model 
is proposed, which indicates the source of the edge 
effects. 

4. Edge effects model 
Edge effects stem from the large scale macrostructure 
of most cellular materials and become important at 
small specimen size to cell size ratios. It is proposed 
that edge effects are a result of a poorly connected, 
outer surface region. Cutting, machining or other 
forms of surface damage of these materials could 
enhance this damaged region. These outer cells are 
included in the specimen dimensions, however, contri- 
bute little to the properties of the sample. The way in 
which this layer of cells will affect the properties 
depends on the loading geometry used in the test. For 
example, under axial loads this outer layer of cells will 
result in a reduction in the effective cross sectional 
area of the sample which is carrying the load. Under 
bending stresses, on the other hand, this layer of cells 
results in a decrease in the effective moment of inertia 
of the beam. At small specimen to cell size ratios, the 
surface cells constitute a large fraction of the specimen 
cross-section and it is in these specimens that edge 
effects dominate the test errors. These effects may play 
a significant role in all property measurements which 
rely on the sample dimensions to obtain the stressed 
volume of material. In cellular solids, particularly at 
small specimen sizes, this outer layer of poorly con- 
nected cells makes it very difficult to accurately obtain 
this stressed volume. 

This work has concentrated on understanding the 
edge effects under bending stresses and their effect on 
elastic modulus and bend strength measurements. In 

Sample (ram) Cell size Specimen size Relative 

(turn) Cell size density 

Elastic modulus (MPa) Bend strength (MPa) 

Average Standard Average Standard 
deviation deviation 

50 • 50 x 250 2.5 20 0.032 
38 x 38 x 190 2.5 15 0,031 
25 x 25 x 127 2.5 10 0,031 
13 x 13 x 64 2.5 5 0,027 
5 x 5 x 38 2.5 2 - 

38 • 38 x 229 0.56 70 0,035 
25 x 25 • 127 0.56 45 0,036 
15 x 15 x 76 0.56 25 0,035 
6.4 x 6.4 x 38 0.56 10 0,036 
5 x 5 • 38 0.56 5 0.029 

25 • 25 x 127 0.25 100 0.041 
18 x 18 x 89 0.25 70 0.040 
10 x 10 x 51 0.25 40 0.041 
5 x 5 x 38 0.25 10 0.036 

49.0 3.61 0.793 0.097 
52.4 3.68 0.772 0.078 
41.3 5.48 0.771 0.065 
30.3 2.88 0.689 0.099 

2.44 1.16 0.129 0.071 

63.3 5.13 0.812 0.112 
59.9 9.30 0.952 0.087 
34.4 5.50 0.686 0,121 
33.3 6.56 0.720 0.162 

8,28 2.97 0.229 0.115 

53,5 5.20 1.27 0.060 
40.7 3.21 1.28 0.054 
42.3 1.61 1.24 0.103 
36.4 2.41 1.08 0.097 
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Figure 4 (a) Schematic of rectangular beam made up of two 
materials. (b) Unit cross section of beam having core of material 1 
(modulus El) and an outer layer of material 2 (modulus E2 where 
E2 < El) having thickness X. (c) Transformed cross-section made 
up entirely of material 1 but maintaining the same resistance to 
bending as Fig. 4b. 

beam bending theory, the stiffness of  a beam can be 
described in terms of its load-deflection response by 
the expression [4] 

g = (pL3)/(48(~o I )  (3) 

where clearly a primary factor affecting the modulus is 
the moment  of  inertia of  the beam. The stresses in a 
continuum beam subjected to bending are described 
by the expression: 

a = M y / I  (4) 

where M is the bending moment  and y the distance 
from the neutral axis to a point of  stress within the 
beam. For  linearly elastic materials, the stress profile 
through the beam is linear. Based on this relationship, 
it is clear that the strength calculation is not only 
affected by the reduction in the effective moment  of  
inertia but also a reduction in the distance y as a result 
of having a poorly connected layer of  cells at the 
surface of the sample. 

It may be possible to predict these edge effects using 
a simple technique based on the bending of composite 
beams. I f  one considers a rectangular beam having a 
unit cross-section being made up of  two materials with 
different elastic moduli as shown in Figs 4a and b. 
Region 1 consists of  the cellular material where all of 
the cells are intact and has a modulus E1 and region 
2 is the layer, around the outside of  the beam, where 
the cells are poorly connected. The outer layer, of  
thickness X, has a lower modulus (E2) then the 
undamaged material. The ratio of  the two moduli is 
represented by the factor n = Ez/E1 where in these 
materials n is always less than 1. One can make the 
entire beam of  one modulus (El), and still maintain 
the same resistance to bending, by multiplying the 
width of each element of  modulus E2 by the factor n. 
The narrowing of the sections must be made in a 
direction parallel to the neutral axis of  the beam so 
that the distance y of  each section from the neutral 
axis remains the same. The transformed cross-section, 
assuming n = 0.5, is shown in Fig. 4c. The parallel 

Figure 5 Relative moment of inertia, as predicted by the model, 
plotted against the ratio of the outer layer thickness and the base or 
height of the beam. Shown are curves for different values of 
n = E2/Lv,. 

axis theorem can be used to calculate the moment  of 
inertia of  this transformed beam in terms of the 
moments of  inertia of  each section [4]. Assuming a 
beam of unit cross-section, the moment  of  inertia of  
the transformed section (Fig. 4c) is given by 

I = [(1 - 2nX)(1 - 2X)3/12] + [2nX3/12] 

+ [nX(l - X)  2] (5) 

where Xis  the thickness of  the poorly connected outer 
layers of modulus E2. In this expression the first two 
parts describe the moment  of  inertia of  the three sec- 
tions about  their respective neutral axes and the last 
part  transfers the moment  of  inertia of  the two small 
rectangles to the parallel axis of  the transformed 
beam. A plot of  the relative moment  of  inertia against 
layer thickness is shown in Fig. 5. I is the moment  of  
inertia of  the transformed beam as given by Equation 
5 and I0 is the moment  of inertia of  the simple rect- 
angular beam (Fig. 4b) made entirely of material 1. 
This latter beam assumes that no edge effects are 
involved as assumed in the original testing procedure 
and the use of  Equations 1 and 2. At thin layers the 
moment  of  inertia drops very rapidly as a result of  
having the lower modulus material at the surface, and 
becomes almost constant at a layer thickness which is 
20% of the beam height. This corresponds to a beam 
having 64% of  the original cross section made up of 
disconnected cells. The relative moment  of  inertia of  
the beam finally levels off asymptotically at a value 
equal to the modulus ratio of  the two materials. This 
type of simple model may be useful in describing the 
edge effects in brittle open cell materials. 

5 .  D i s c u s s i o n  o f  r e s u l t s  
The experimental elastic modulus results are plotted 
as the relative modulus (E/Eo) against the specimen to 
cell size ratio in Fig. 6. The relative modulus is 
described as the experimental modulus of  the sample 
( E )  divided by the modulus of  the same cell size 
material but exhibiting little or no edge effects (E0). 
The value of E0 was taken as the average value of the 
large specimens where the modulus reached a relatively 
constant value. The moduli contained in this plateau 
region were determined as those having a statistically 
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Figure 6 Experimental results of the three different cell size 
materials plotted as the relative elastic modulus against the ratio of  
cell size and the base or height of  the samples. Also included is 
theoretical line given by model. 03 2.5 ram, �9 0.56 ram, �9 0.25 ram, 
- -  model.) 

insignificant difference between their means at a sig- 
nificance level of 0.05. Since the elastic modulus of a 
beam, subjected to bending, scales directly with the 
moment of inertia, one would expect similar behaviour 
to that given by the model in Fig. 5. A theoretical line, 
given by the model, was selected to give a best fit to the 
majority of the data and is included in Fig. 6. This line 
corresponds to a modulus ratio (n) value very close to 
0 and a value of X equal to the cell size. The data 
exhibits the general trend of decreasing modulus with 
specimen size as described by the model and the 0.56 
and 0.25 mm cell size specimens give a reasonable fit to 
this theoretical line. The large cell material (2.5mm) 
exhibits the same trend, however, the points are shifted 
to the right of the theoretical line. Perfect agreement 
of the measured values with the model is only possible 
if the thickness of the poorly connected layer of cells 
would equal the cell size. The fact that the large cell 
data is shifted to the right of the predicted line indi- 
cates that the layer thickness in these samples is less 
than the cell size. It may be more realistic to treat the 
outer, poorly connected layer as a damage zone that 
may include other effects such as damage from the 
cutting and machining operations. In this case, the 
depth of this damage zone would be controlled by a 
balance between the magnitude of the stress field 
induced by the machining operation and the strength 
of the individual struts within the structure. Based on 
this argument, it is feasible that the thickness of this 
damage zone be greater than one cell size in small cell 
materials, if the stress field required for strut failure 
extends beyond one cell diameter. In large cell 
materials, a damage zone less than one cell size is 
equally possible, as the cells are arranged randomly 
within the structure and therefore, the edge of a cell 
will occur at a mean depth of approximately half the 
cell size from the outer surface. 

It may be possible to use the type of plot shown in 
Fig. 6 to estimate the thickness of this damaged zone 
by comparing the experimental values with the theor- 
etical line. One must realize, however, that this is an 
estimated thickness averaged over the entire specimen 
surface and in reality may not be as uniform as depicted 
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Figure 7 Experimental results for the three materials plotted as the 
relative strength against the ratio of  cell size over sample size. 
(rn 2.Smm, �9 0.56mm, �9 0.25ram.) 

by the model (Fig. 4a). In reality, the thickness of this 
layer will vary from point to point along the surface of 
the sample about a mean value as estimated by the 
model. 

The relative strength is plotted in the same manner 
in Fig. 7. A similar trend to that seen in the modulus 
data is observed for smaller specimens. In terms of the 
model, the calculated values of the strength are 
reduced due to both a reduction in the effective 
moment of inertia, as well as, a change in the location 
of the point of maximum stress within the beam. It 
may be possible to account for this large variation in 
the calculated strength as a result of edg e effects by 
using the proposed model. From Equation 3, the elastic 
modulus is proportional to the moment of inertia of a 
linearly elastic beam. The stress also depends on the 
moment of inertia (Equation 4) and scales linearly 
with the distance from the neutral axis to the point of 
maximum stress (y) within the beam. The failure 
strength is usually taken as the value of the maximum 
tensile stress occurring at a distance furthest from the 
centroid of the beam. Equation 3 can be rearranged to 
give the moment of inertia in terms of the load-deflec- 
tion response of the sample 

I = ( p L 3 ) / ( 4 8 E o c S o )  (6) 

This represents the effective moment of inertia of the 
sample and can be substituted into Equation 4, i.e., we 
are assuming that we need to measure I rather than 
calculating a value from the beam dimensions. The 
strength can be further corrected by utilizing the esti- 
mated damage zone thickness to account for the 
change in y due to the presence of this damaged layer 
of cells. This yields an expression for the bend strength 
which has been corrected for edge effects; i.e., 

a = { 1 2 6 o E o [ ( h / 2 )  - X ] } / L  2 (7) 

where 60 is the maximum deflection at fracture, E0 the 
true elastic modulus of the cellular material. 

The measured strength values for all the specimen 
sizes have been treated using this approach and are 
plotted in Fig. 8, Correcting for the edge effects has 
resulted in a dramatic reduction of the variability in the 
strength values over those plotted in Fig. 7 and shows 
that the strength is relatively independent of specimen 
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Figure 8 Experimental values of  the strength corrected for edge 
effects by the simple model and plotted against cell size over sample 
size. 03 2 .5mm, �9 0.56ram, I 0 .25mm.) 

size. The variability has been reduced from an order of 
magnitude to a factor of 2. As will be discussed later, 
this remaining variability may be related to the uncer- 
tainty in estimating the stressed volume in small speci- 
mens. Some scatter in the strength is still observed 
which may be attributed to experimental errors, errors 
in the model assumptions or differences in the carbon 
properties from specimen to specimen. The deviation 
in the average value plotted at a cell--specimen size 
ratio of 0.5 is attributed to error in accurately measur- 
ing the sample dimensions as these specimens consisted 
of only 1 to 2 cells across the base and height. This 
data set also had an extremely large variance. 

It is important to point out that there is an additional 
factor not accounted for in this analysis which results 
from the statistical nature of flaws in ceramics. In 
dense ceramics the strength shows an inverse depen- 
dence on the sample volume due to the reduced prob- 
ability of finding a critical flaw in a smaller volume of 
material. Dense ceramics therefore exhibit an increase 
in strength with decreasing specimen size for a con- 
stant flaw distribution. In the range of specimen sizes 
included in this study this behaviour is overshadowed 
by the edge effects. For example, assuming a two- 
parameter Weibull distribution having a Weibull 
modulus of 15, which is typical for these materials, an 
order of magnitude decrease in sample volume would 
be predicted to give a 16% increase in strength from 

[7] 

= (V lV ) 1/m (8) 

where m is the Weibull modulus, a~ and o- 2 the fracture 
stresses of the two samples and V~, V2 are their respect- 
ive volumes [7]. This expression assumes the same 
loading geometry for both specimen sizes. For most 
ceramic materials, where edge effects do not signifi- 
cantly alter the stressed volume, the volume effect 
given by Equation 8 dominates the specimen size 
behaviour. One might expect these probabilistic 
effects to dominate in very large cellular specimens as 
well, where edge effects become insignificant. 

Thus far we have shown that testing specimens 
which are too small can result in an underestimation 
of the true strength of the material. This was explained 
as resulting from an uncertainty in the volume of 
material being tested due to a poorly connected layer 
of cells over the sample surface. When designing with 
ceramics it is not only important to know the magni- 
tude of the strength but also the width of the strength 
distribution. In this study, the variability in the 
strength increased significantly when testing the small 
specimen sizes. This is believed to be a result of the 
uncertainty in knowing the stressed volume of material 
at small specimen to cell size ratios. Specimen sizes 
were selected such that at least 15 to 20 samples were 
tested in the group and a damage zone was predicted 
by the simple model. The strengths for these samples 
are shown in Table III, as well as, the coefficient of 
variability which is defined as the standard deviation 
of the data divided by the mean. It was observed, in 
both the calculated strength, as well as, that corrected 
by Equation 7, that the coefficient of variability 
increases with decreasing specimen size. Based on a 
statistical approach to the strength distribution, if the 
damage zone was of a uniform thickness over the 
entire sample surface, the coefficient of variability 
should not change with specimen size. In reality, how- 
ever, the damage zone varies from point to point along 
the sample about some mean value which is predicted 
by the model. The thickness of the damage zone was 
estimated from the average elastic modulus of five 
samples whereas the strength was measured on 20 
samples and, therefore, the strength correction was 
unable to account for this variability. It is felt that the 

T A B L E  I I I  Strength variability analysis 

Sample (ram) Cell size Bend strength (MPa) 
(ram) 

Average Coefficiency 
variability 

Corrected strength (MPa) Coefficient of  
variability 

Average Coefficiency (based on 1/bh 2) 
variability 

25 x 25 x 127 2.5 0.771 0.084 0,839 0.122 0.035 
13 x 13 x 64 2.5 0.689 0.144 0.916 0.149 0.120 

5 x 5 x 38 2.5 0.129 0.550 0.969 0.631 0,300 

25 x 25 x 127 0.56 0.952 0.091 0.832 0.136 0.011 
15 x 15 x 76 0.56 0.686 0.176 0.959 0.174 0.150 
6.4 x 6.4 x 38 0.56 0.720 0.225 0.867 0.400 0.173 
5 x 5 x 38 0.56 0.229 0.502 1.060 0.491 0.581 

18 x 18 x 89 0.25 1.28 0.058 1.67 0.059 0.069 
10 • 10 x 51 0.25 1.24 0.083 1.52 0.158 0.056 
5 x 5 x 38 0.25 1.08 0.090 1.44 0.432 0.103 

4 5 7 6  



increase in the strength variability is due to the uncer- 
tainty in the stressed volume of  the beam and as the 
specimen size decreases, the fraction of  the volume 
composed of  this damaged region constitutes a signifi- 
cant portion of the sample. 

A simple approximation was used to estimate the 
variability in the sample volume and was compared to 
the strength variability. In the calculation of  strength 
(Equation 2), the fracture load and span of  the fixture 
are known with reasonable accuracy and therefore 
contribute very little to the total error in the strength 
calculation. The largest portion of the variability, 
other than that predicted by flaw statistics, results 
primarily from the uncertainty in the bh 2 term in the 
denominator. We can estimate the mean and standard 
deviation of b and h if we assume that they follow a 
normal distribution. The model proposed in this 
paper predicted an average value of  the damage zone, 
and from the sample dimensions we know the maxi- 
mum possible values of b and h. If  the specimen 
dimensions fit a normal distribution then on each 
surface, b is centred about a mean value with one 
damage zone thickness (X) above it and one below it. 
As there are two surfaces, the mean value of b can be 
estimated as 5 = b - 2X. From the Empirical Rule 
we know that approximately all of  the measurements 
fitting a normal distribution are within three standard 
deviations from the mean [8]. We can then estimate 
the population standard deviation, ab ~ 2X/3. The 
specimens used in this study had a square cross- 
section (b = h) and, therefore, both dimensions have 
approximately the same mean and variance. Multipli- 
cative rules of statistics allow one to predict the vari- 
ance of a product of  two independent normal random 
variables if their respective means and variances are 
known [9]. Although we know the distributions of b 
and h, we do not know how their reciprocals are 
distributed. We cannot, therefore, use these statistical 
relationships to estimate the variance in strength as a 
function of  the variance in 1/bh 2. It is possible to 
estimate this through simulation. This was done by 
randomly generating 5000 numbers fitting a normal 
distribution having the mean and standard deviation 
of b and h as described above. One can then take the 
reciprocal of  the cube of these numbers and calculate 
the mean and standard deviation of  this transformed 
data set. The coefficient of variability of these trans- 
formed values should give an estimate of the coeffi- 
cient of variability in the strength due to the uncer- 
tainty in 1/bh 2. This simulation was performed for the 
specimen sizes in Table III and the results are given in 
the last column. Comparing the coefficients of vari- 
ability in 1/bh 2 with those of the experimental bend 
strength data it appears that the majority of the vari- 
ability in the strength measurements can be accounted 
for by the uncertainty in the actual stressed volume of 
material. The same increasing variability is observed 
in the dimensions and the strength with decreasing 
specimen size. 

Strength variability is often discussed using a Weibull 
analysis where the Weibull modulus, rn, describes the 
width of the strength distribution. The Weibull modu- 
lus is commonly used in the design of structural corn- 

ponents to maintain a certain maximum risk factor for 
catastrophic failure. If  one relates the standard devi- 
ation of the data to a Weibull modulus for the large 
specimens, where minimal edge effects are incurred, a 
value for rn in the range of 15 to 25 is typical for these 
materials. At  the smaller specimen sizes, where the 
uncertainty in sample volume contributes to a broader 
strength distribution, the Weibull modulus quickly 
drops to 2 to 6. This indicates that it is important to test 
large specimen sizes of cellular materials because the 
edge effects lead to an underestimation of the magni- 
tude of the strength, as well as, an overestimation of  
the width of its distribution. One can use the proposed 
model to account for edge effects in small specimens, 
however, a large number of specimens must be tested 
to obtain an accurate estimate of  the mean. This is due 
to the increased variability resulting from the uncer- 
tainty in the stressed volume of small specimens. In 
order to precisely describe the width of the strength 
distribution one must test large specimen sizes. 

6. Summary and conclusions 
This work involved the measurement of the elastic 
modulus and strength of a reticulated vitreous carbon 
to study the edge effects on the properties of  brittle 
cellular materials. It was shown that in a three-point 
bend geometry these materials can exhibit significant 
edge effects when small specimen sizes are tested. 
These edge effects stem from the relatively large 
macrostructure found in cellular solids which results 
in a poorly connected layer of cells at the surface of the 
samples. This layer of poorly connected cells is included 
in the total sample volume but contributes very little 
to the mechanical properties. The effective moment of  
inertia, as well as, the distance from the neutral axis to 
the point of maximum stress in the beam is less than 
expected based on the sample dimensions. This results 
in a dramatic underestimation of the magnitudes of 
the material properties and an overestimation of the 
width of their distributions when calculated using 
standard beam equations. It was observed that 
samples which are tested in bending must have at least 
15 to 20 cells along the base and height in order to 
minimize these effects. 

A simple model, based on a composite beam analy- 
sis, was proposed as a way to correct for these edge 
effects when the testing of  large specimens becomes 
impractical. Experimentally this involves the incor- 
poration of a deflection measurement during the 
strength testing procedure. The load-deflection response 
of the sample is then used to estimate the thickness of 
the damaged zone and the reduced moment of inertia 
due to this outer damaged layer of cells. It was found 
that this type of treatment can reduce errors in bend 
strength measurements from an order of magnitude to 
less than a factor of two. When working with new 
classes of materials, like cellular solids, it is important 
to realize these types of special testing considerations 
particularly when relying on laboratory samples to 
obtain characteristic material properties. 
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